Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(and(tt, X)) → mark(X)
__(mark(X1), X2) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
top(mark(X)) → top(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + 2·x1 + x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + 2·x1 + 2·x2
POL(isNePal(x1)) = x1
POL(mark(x1)) = 2 + x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(top(x1)) = x1
POL(tt) = 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
proper(nil) → ok(nil)
proper(isNePal(X)) → isNePal(proper(X))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2·x1 + x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(isNePal(x1)) = 2 + x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(ok(x1)) = x1
POL(proper(x1)) = 2·x1
POL(top(x1)) = x1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
proper(and(X1, X2)) → and(proper(X1), proper(X2))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2·x1 + x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + x1 + 2·x2
POL(isNePal(x1)) = 2·x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = 2·x1
POL(top(x1)) = 2·x1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(ok(X)) → top(active(X))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + x1 + x2
POL(active(x1)) = 1 + 2·x1
POL(and(x1, x2)) = 2 + 2·x1 + x2
POL(isNePal(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(ok(x1)) = 2 + 2·x1
POL(proper(x1)) = 2 + 2·x1
POL(top(x1)) = x1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(isNePal(X)) → isNePal(active(X))
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(isNePal(X)) → isNePal(active(X))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = x1 + 2·x2
POL(active(x1)) = 2·x1
POL(isNePal(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = 2·x1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + x1 + x2
POL(isNePal(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = 1 + 2·x1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
__(ok(X1), ok(X2)) → ok(__(X1, X2))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2·x1 + x2
POL(isNePal(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(ok(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
__(X1, mark(X2)) → mark(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + 2·x1 + 2·x2
POL(isNePal(x1)) = 2 + 2·x1
POL(mark(x1)) = 1 + x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.